Tratamientos Térmicos
1.-Objetivo
Saber que es un tratamiento térmico, su clasificación, saber distinguir entre cada tratamiento.
Saber su importancia de cada tratamiento alrededor de nuestra vida.
2.- Definición
El tratamiento térmico es la operación de calentamiento y enfriamiento de un metal en su estado sólido a temperaturas y condiciones determinadas para cambiar sus propiedades mecánicas. Nunca alteran las propiedades químicas. Con el tratamiento térmico adecuado se pueden reducir los esfuerzos internos, el tamaño del grano, incrementar la tenacidad o producir una superficie dura con un interior dúctil. Para conocer a que temperatura debe elevarse el metal para que se reciba un tratamiento térmico es recomendable contar con los diagramas de cambio de fases como el de hierro - carbono. En este tipo de diagrama se especifican las temperaturas en las que suceden los cambios de fase (cambios de estructura cristalina), dependiendo de los materiales diluidos. Los tratamientos térmicos han adquirido gran importancia en la industria en general, ya que con las constantes innovaciones se van requiriendo metales con mayores resistencias tanto al desgaste como a la tensión. El tiempo y la temperatura son los factores principales y hay que fijarlos de antemano de acuerdo con la composición del acero, la forma y el tamaño de las piezas y las características que se desean obtener.
3.- Tipos de Tratamientos Térmicos
3.1 Recocido
Su objetivo principal es "ablandar" el acero para facilitar su mecanizado posterior. También es utilizado para regenerar el grano o eliminar las tensiones internas. Se debe tener en cuenta que los recocidos no proporcionan generalmente las características más adecuadas para la utilización del acero y casi siempre el material sufre un tratamiento posterior con vistas a obtener las características óptimas del mismo. Cuando esto sucede el recocido se llama también "tratamiento térmico preliminar" y al tratamiento final como "tratamiento térmico de calidad". Los tipos de recocidos son los siguientes: recocido de regeneración, recocido de engrosamiento de grano, recocidos globulares o esferoidales (recocido globular subcrítico, recocido regular de austenización incompleta o recocido globular oscilante), recocido de homogenización, recocidos subcríticos (de ablandamiento o de acritud), recocido isotérmico y recocido blanco.
Recocido Supercríticos
De austenización completa (recocido de regeneración): se calienta el acero a temperaturas superiores a las críticas Ac3 ó Accm para transformar el material en austenita, mayormente se utilizan para los aceros que presentan efectos de fatiga. De austenización incompleta (recocido globular de austenización incompleta): se realizan a solo temperaturas superiores a las Ac1 y Ac3-2-1 se convierte la ferrita en austenita.
Recocido Subcrítico
Se calientan los materiales a temperaturas inferiores a las temperaturas críticas Ac1 ó Ac3-2-1. Este a su vez se clasifica en: recocido globular que consigue la cementita de estructura globular mas perfecta; recocido de ablandamiento; recocido contra acritud se realiza para mejorar la ductilidad y maleabilidad del acero y poder someterlo a nuevos procesos de laminación; recocido de estabilización
Recocido Isotérmico
A diferencia de todos los anteriores se trasforma la austenita en perlita a una temperatura constante.
En el recocido de segundo genero o de austenizacion completa ,se calienta el material por encima del punto critico superior , y se mantiene caliente hasta lograr una homogenización del material, luego producimos un enfriamiento lento para conseguir que el acero quede blando , cuanto mas lento sea el enfriamiento mas blando será el acero, si se aumenta la velocidad de enfriamiento al atravesar el acero la zona critica , se aumenta la dureza , si esta velocidad sobrepasa la velocidad critica , la austenita comienza a transformarse en otros constituyentes. El acero se puede sacar del horno cuando ya los cristales de austenita se han transformado completamente en perlita blanda, este punto depende de la velocidad de enfriamiento, por ejemplo a una velocidad de 10 grados -hora, el proceso de transformación ocurre sobre los 700-680 grados, y a 20 grados - hora, la transformación ocurre a 680-650 grados.

3.2 Temple
El temple es un tratamiento termico que consiste en enfriar muy rápidamente, la mezcla austenitica homogénea, que tenemos después de calentar el acero, con este enfriamiento rápido se consigue un aumento de dureza, ya que el resultado microscopico final es una mezcla martensítica. La temperatura de temple para los aceros hipoeutectoides son de 30-50 grados, por encima de esta temperatura, el grano de austenita crece mucho, obteniéndose austenita basta de baja tenacidad. El tiempo de enfriamiento debe de ser rápido pero solo en el intervalo de temperatura de 650-400 grados, que es donde la austenita es menos estable , y es donde se forma la mezcla de ferrita y cementita , por encima de 650 grados la velocidad puede ser mas lenta , pero no tanto que permita la precipitación de ferrita o la transformación de austenita en perlita , por debajo de los 400 grados comienza la zona de estabilidad de la austenita , y el enfriamiento puede volver a ser lento, y en el intervalo de 200-300 grados, el enfriamiento debe de ser lento para evitar tensiones térmicas resultantes de un enfriamiento rápido. En los aceros hipereutectoides el temple se suele realizar con calentamiento de austenización incompleta, en la masa original caliente hay austenita y una cantidad de cementita y carburos aleados, después del enfriamiento se obtiene martensita y carburos, este proceso produce mejores resultados en la practica industrial. Factores que influyen en el temple de los aceros son la composición, el tamaño de grano, el tamaño de las piezas. El estudio de las velocidades críticas del temple debe de hacerse con ayuda de las curvas de la “S” de enfriamiento continuo, las cuales reflejan la influencia de la composición sobre la velocidad de enfriamiento, al aumentar el porcentaje de manganeso y cromo, las curvas se desplazan hacia la derecha y por tanto las velocidades críticas del temple disminuyen. El tamaño de grano modifica la situación y forma de la curva “S”, en aceros de la misma composición, las velocidades del temple de grano grueso son menores que las velocidades de grano fino. El tamaño , volumen , y espesor de las piezas tiene gran importancia, ya que si enfriamos una pieza grande primero se enfría la superficie exterior rápidamente , pero las capas interiores tardan mas , ya que el calor debe de atravesar las capas exteriores y estas capas tienen una conductividad limitada , con lo cual perfiles delgados enfrían antes que gruesos. El medio de enfriamiento también influye siendo este proceso por etapas , en la primera el acero al sumergirse en el liquido se forma una capa de vapor , al ser su temperatura muy alta, que rodea el metal , y el enfriamiento se hace por conducción y radiación a través de la capa gaseosa , siendo un enfriamiento muy lento. En la segunda etapa cuando desciende la temperatura de superficie del metal, la película de vapor va desapareciendo, pero el líquido hierve alrededor de las piezas y se forman burbujas que transportan el vapor por conducción. En la tercera etapa el enfriamiento lo hace el líquido por conducción y conveccion, cuando la diferencia de temperatura del líquido y la pieza es pequeña., con lo que el liquido influye en la velocidad según su temperatura de ebullición, su conductividad térmica, su viscosidad, su calor especifico y su calor de vaporización.
Si se realiza un temple mal, nos podemos encontrar con defectos en la pieza como una dureza insuficiente para nuestros propósitos, que se hayan formados puntos blandos, piezas con mucha fragilidad, descarburación, grietas etc.
La dureza escasa y la formación de puntos blandos se explican por la falta de calentamiento, por no haber alcanzado la temperatura necesaria, o por no haber permanecido el suficiente tiempo en ella, la fragilidad excesiva es por un temple a temperaturas altas, etc. por lo cual hay que extremar los cuidados a la hora de iniciar un proceso de temple, y realizarlo correctamente, ya que son muchos los factores que pueden echar a perder las piezas, y que no sean validas para nuestros propósitos.

Existe un proceso llamado temple superficial que se usa para endurecer superficialmente ciertas piezas de acero conservando la tenacidad de su núcleo, el proceso consiste en calentar las capas superficiales a una temperatura superior a los puntos críticos y enfriar rápidamente siguiendo la sección de la pieza , como las diferentes capas interiores de la pieza se han calentado a diferentes temperaturas , se ha producido en la pieza diferentes temples, en la superficie el temple será completo, en el interior, incompleto, y en el centro inexistente.
Hay diferentes métodos como el de calentamiento por llama oxiacetilénica, recomendado para piezas que por su forma o tamaño, no se pueden aplicar otros métodos, la ventaja de este método es que se pueden templar incluso partes de una pieza, el método de inducción, que usa el flujo magnético creado por una corriente alterna de alta frecuencia que pasa por un inductor, la característica mas importante de este método es que para cada forma de pieza. Se le colocan unas espiras de una forma determinada, es el método más empleado ya que no se quema el carbono, no se produce oxidación, y no se forma cascarilla, el inconveniente principal es que no se puede utilizar para piezas únicas, ya que hay que crear un inductor específico para cada forma.

3.3 Revenido
Después del temple, los aceros suelen quedar demasiado duros y frágiles para los usos a los que están destinados. Esto se corrige con el proceso del revenido, este proceso consiste en calentar el acero a una temperatura mas baja que su temperatura critica inferior, enfriándolo luego al aire, en aceite o en agua, con esto no se eliminan los efectos del temple, solo se modifican, se consigue disminuir la dureza, resistencia, y las tensiones internas, y se aumenta la tenacidad. El acero, después del temple, esta compuesto por cristales de martensita, si se vuelve a calentar a diferentes temperaturas, entre Temp. Ambiente y 700º y después se enfría al aire, la resistencia a la tracción disminuye a medida que la Temp. del revenido aumenta , y al mismo tiempo aumenta la ductilidad y la tenacidad , la resistencia al choque o resiliencia, que es baja cuando el revenido se hace a Temp. inferiores a 450ºC, aumenta cuando se hace a Temp. más elevadas. En ciertos aceros en los que después del temple queda austenita residual, se presenta un aumento de dureza, cuando el revenido se hace entre 350ºC y 550ºC, transformándose la austenita en otros constituyentes. Los aceros después del revenido, por lo general se contraen estas variaciones de propiedades que suceden en el revenido, se deben a los cambios microestructurales, que consisten en la descomposición de la martensita que se había obtenido en el temple y que se transforma en otros constituyentes más estables. La estructura obtenida en un revenido a 200-250ºC es de martensita de red cúbica, a 400ºC se observa un oscurecimiento fuerte, al aumentar a 600-650º se desarrolla la coalescencia de la cementita. Con ayuda del telescopio electrónico se ha podido llegar a la conclusión que el revenido se hace en tres etapas:
-La primera etapa se realiza a bajas temperaturas, menores de 300ºC, y se precipita carburo de hierro epsilon y el porcentaje de carbono en la martensita baja a 0.25%, el carburo de hierro cristaliza en el sistema hexagonal, en los limites de los subgranos de la austenita, y la martensita cambia su red tetragonal a red cúbica
-En la segunda etapa, solo se presenta cuando hay austenita retenida en la microestructura del acero, la cual se transforma en vainita, que al ser calentada a altas temperaturas también precipita en carburo de hierro, con formación final de cementita y ferrita.
-En la tercera etapa, el carburo de hierro que apareció en la primera etapa, se transforma en cementita, cuando sube la Temp. Se forma un precipitado de cementita en los limites y en el interior de las agujas de martensita, la cual al aumentar la Temp. se redisuelve la del interior y se engruesa la del exterior, al subir mas la Temp. Se rompe la cementita exterior, y a 600ºC la matriz queda constituida por ferrita. Al final la martensita se ha transformado en cementita y ferrita. En los revenidos la martensita obtenida al temple, va perdiendo carbono que aparece en forma de carburo epsilon, y cementita. Cuando después del temple aparece austenita residual, los cambios microestructurales cuando empieza a calentar, son iguales a los anteriores, pero a 225ºC comienza la descomposición de la austenita hasta los 400ºC , produciéndose un oscurecimiento de la estructura. Cuanto mas baja sea la temperatura del temple, la austenita residual será menos refractaria, y a mas Temp. del temple será mas difícil conseguir la transformación isotermica de la austenita . Esta austenita sufre una precipitación de carburos complejos de alta aleación, y disminuye el contenido en carbono, después de esta precipitación y al enfriar, se transforma en bainita.
En el caso de herramientas fabricadas con aceros rápidos, se mejoran dando un doble revenido, con el que se eliminan las tensiones residuales y se evita la fragilidad excesiva. En el primer revenido se transforma la martensita tetragonal en revenida , precipitando carburos aleados , disminuyendo la concentración de austenita “ acondicionamiento de la austenita “, que al enfriar se convierte en bainita con características parecidas a la martensita , en el segundo revenido se calienta a 550º , con lo que se evita que quede martensita sin revenir. En algunas clases de aceros , el revenido entre 250-400º , se presenta una disminución de la tenacidad , que se produce en la tercera fase del revenido , cuando la cementita envuelve las agujas de martensita , la fragilidad aumenta cuanto mayor es la red de cementita , y a temperaturas mayores esta red desaparece , y aumenta la fragilidad. Existe otra fragilidad llamada de Krupp , que se presenta en los revenidos de los aceros cromo-niqueles , y se presenta cuando después del temple , el acero permanece mucho tiempo en el intervalo de 450-550º , esta fragilidad no va acompañada de cambios de dureza, volumen, ni cambios significativos en la estructura , esta fragilidad aparece en los aceros sensibles a este fenómeno independientemente de la velocidad de enfriamiento , para evitar este fenómeno se enfría rápidamente para evitar estar mucho tiempo en este intervalo de temperaturas.
Para valorar la importancia de esta fragilidad se utiliza el coeficiente de susceptibilidad S = resiliencia de enfriamiento muy rápido / resiliencia de enfriamiento lento. Los factores que influyen en la fragilidad del revenido, son la velocidad de enfriamiento (como hemos comentado antes), el tiempo de permanencia en el intervalo de temperatura critica y la duración del revenido a Temp. Superiores a la zona de fragilidad.
Hay otros métodos de tratamiento térmico para endurecer el acero.
Cementación: Las superficies de las piezas de acero terminadas se endurecen al calentarlas con compuestos de carbono o nitrógeno.
Carburización: La pieza se calienta manteniéndola rodeada de carbón vegetal, coque o gases de carbono.
Cianurización: Se introduce el metal en un baño de sales de cianuro, logrando así que endurezca.
Nitrurización: Se usa para endurecer aceros de composición especial mediante su calentamiento en amoniaco gaseoso.
4.- Ejemplos
- Soldadura- Empleado en áreas donde se lleva a cabo maquinaria manejando soldadura del auto, así mismo utilizando los tratamientos térmicos.
- Como ya mencionado en la soldadura, en el montaje de piezas para los autos, en las pastes internas y externas.
- Construcción de dispositivos- En dichos dispositivos se puede observar en el momento del ensamble como el acero de las piezas es sometido a diversos tratamientos ya mencionados para la dureza o firmeza del dispositivo , dependiendo su uso.
5.- Resumen
En volkswagen tiene una gran importancia los tratamientos ya que de ello depende la calidad de nuestros autos que se ensamblan ya que no solo importa la carrocería si no de igual forma sus motores de combustión interna que la mayoría de sus partes llevan algún tratamiento.
No hay que dejar aun lado que algunas maquinarias, instrumentos o dispositivos que se utilizan durante el proceso de fabricación de los autos llevan de alguna forma algún tratamiento y sin ellos no podrían cumplir su tarea designada.
6.- Cuestionario
1.-¿Que es un tratamiento térmico?
El tratamiento térmico es la operación de calentamiento y enfriamiento de un metal en su estado sólido a temperaturas y condiciones determinadas para cambiar sus propiedades mecánicas
2.-¿Cuales son los principales tratamientos térmicos?
-Temple
-Revenido
-Recocido
3.-Menciona un ejemplo del uso de los tratamientos térmicos dentro de la industria automotriz Volswagen:
-Construcción de dispositivos- En dichos dispositivos se puede observar en el momento del ensamble como el acero de las piezas es sometido a diversos tratamientos ya mencionados para la dureza o firmeza del dispositivo , dependiendo su uso.
4.- ¿Cual es el objetivo del recocido?
Su objetivo principal es "ablandar" el acero para facilitar su mecanizado posterior. También es utilizado para regenerar el grano o eliminar las tensiones internas.
5.-¿En que consiste en temple?
Consiste en enfriar muy rápidamente, la mezcla austenitica homogénea, que tenemos después de calentar el acero, con este enfriamiento rápido se consigue un aumento de dureza, ya que el resultado microscopico final es una mezcla martensítica.
6.-¿En que consiste el revenido?
En calentar el acero a una temperatura mas baja que su temperatura critica inferior, enfriándolo luego al aire, en aceite o en agua, con esto no se eliminan los efectos del temple, solo se modifican, se consigue disminuir la dureza, resistencia, y las tensiones internas, y se aumenta la tenacidad.
7.-¿Por que esta compuesto el acero después del temple?
Por cristales de martensita
8.-¿Que otros tipos de tratamientos hay para endurecer el acero?
Cementación : Las superficies de las piezas de acero terminadas se endurecen al calentarlas con compuestos de carbono o nitrógeno.
Carburización : La pieza se calienta manteniéndola rodeada de carbón vegetal, coque o gases de carbono.
Cianurización : Se introduce el metal en un baño de sales de cianuro, logrando así que endurezca.
Nitrurizacióm : Se usa para endurecer aceros de composición especial mediante su calentamiento en amoniaco gaseoso.
7.- Bibliografía
8.- Dibujo
No hay comentarios.:
Publicar un comentario